Ed Voytko, P.E., a principal engineer at D’Appolonia, received notice that his paper “Prehistoric Landslide Stabilization with Ground Anchors and Surface Reaction Pads,” was accepted for publication at the ASCE Geo-Institute ER 2010, Earth Retention Conference 3 later this year in Bellevue, Washington. The paper describes the geotechnical evaluation and monitoring of an ancient landslide and the design and construction of a system of ground anchors and surface reaction pads installed to stabilize the landslide. Corfu Street in the City of Pittsburgh is perched on an isolated, lenticular plateau midway up the south valley wall of the Ohio River. The plateau represents the head of a prehistoric rockslide and comprises the surface of a 40-foot-thick layer of landslide of soil and rock debris resting on a mildly sloping claystone rock ledge. A steep, 150-foot-high rock slope drops from this plateau to an active mainline railroad track below. Following a year-long period of above-average rainfall, the landslide, involving more than 120,000 cubic yards of accumulated soil and rock debris, was re-activated by an apparent rise in the groundwater table and resulting saturation of the slide mass.